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Outline

* Energy released by flare reconnection is “instantaneously” mapped and
“resolved” in the chromosphere.

* Flare ribbon observations provide diagnostics of flare energetics, or the
characteristics of flare heating: when, where, by how much, for how
long, and through what mechanism, is the flaring atmosphere heated.

* Advanced observations + analysis + models are expected to tackle
challenges coupling the chromosphere and corona, magnetically and
energetically, solving outstanding problems.



What are the Problems?

* Mechanisms storing free magnetic energy (FME): of 1033 erg, over days
(t ~ 104> s), in the entire AR or beyond ( L ~ 10'° cm).

* Mechanisms triggering the onset of FME release: the ideal or non-ideal

(i.e. reconnection) debate; whether global or local, the system evolves into
the instability in hours (103 s).

* Mechanisms converting FME to other energy (10%°-3¢ erg), kinetic energy of
particles and of bulk motion, ultimately to photons, in fens of minutes
(10%3 s) in volume of 1028-29 ¢cm3 for a typical flare.

How much is the energy used to heat flaring atmosphere, and how?



flares are events of reconnection energy release

(Credit: UCR)



reconnection:

change of magnetic field
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reconnection: change of magnetic field
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magnetic reconnection forms flare arcade and ribbons

ormation/heating of flare
loops observed in extreme
ultraviolet light by the

Solar Dynamics Observatory
(Sun+2015) ribbon fronts

from Terry Forbes



reconnection rate inferred from chromosphere ribbons
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magnetic reconnection forms flare arcade and ribbons

current sheet

flux rope
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(Hayvaerts+1977) (Lin-Forbes-Isenberg+1995)

Confined flares? Eruptive Flares?



reconnection released energy heats loops and ribbons
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a standard solar flare: radiation of all kinds
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Neupert (1968) effect:

(1)All heating is in impulsive
phase, by nth electrons;

(2) Chromospheric
evaporation makes the
corona dense & emit (T n?);

(3) Rest (the gradual phase)
is cooling .. but somewhat
slower than expected.



a standard solar flare: energy of all kinds

GOES1-8A
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heating and cooling of flare plasmas
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heating conduction radiation enthalpy

heating phase: corona gains energy and mass, T and n increases.
cooling phase: corona loses energy and mass, T and n decreases;

observed 2 dl
C,(t) = | R, (T)n?(T) —dT, counts/s/pxl
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DEM: differential emission measure



heating of one big flare loop with Q ...
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the slow cooling problem
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Cooling by classical thermal conduction: V- F =~ Ko =, Tcona = K—fs/z
0

kBT 5 Bx107%2
NA(T) % awio=
2x10722

Cooling by radiation loss: 7,44 = A(T)

[ |

O_r; év 7 8 LOg (T)
At n~ 1010 cm=3,T ~ 3 — 10 MK, T,y ~ 1 — 100 5, T,qq ~ 300 — 1000 s.

Observed radiation at 3-10 MK often lasts tens of minutes to hours.

Why so slow?
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A standard solar flare: spatial structure
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Flare loops heat up and then cool from 10 MK to 1 MK, each of them evolving independently



Flare ribbon/kernel emissions trace the heating
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Impulsive emission at the foot-
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heating in AIA-scale “elementary bursts”
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heating in AIA-scale

“elementary bursts”

Lightcurves
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heating in IRIS-scale "elementary bursts”
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IRIS observations of an X-class
two-ribbon flare reveal
prototypical “elementary” bursts
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heating and dynamics in IRIS-scale “elementary bursts”

Graham+15
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~ two-ribbon flare reveal
- prototypical “elementary” bursts
- (Graham+15, Brannon+15, Li+15 ...):

- - entirely blue-shifted,

symmetric Fe XXI line,

- Si IV line fitted to 1-2

Gaussians,

- - similar dynamic patterns

- scale 150-300km (80-200km
w/GST, Jing+16)



96 R. C. CANFIELD

DISCUSSION

SVESTKA: I don't understand how a shock going into the chromosphere can
have a duration of a few minutes.

CANFIELD: A shock going into the chromosphere at a single footpoint can
have a dquration — if you believe the numerical simulation - which is
only approximately 30 s to one minute. So, if we were to see within a
single observing pixel a strong red shift for a period of several
minutes, the only possible interpretation we could make, if we believe
this evaporation picture, is that in fact multiple episodes occurred
within that pixel, as you might expect, for example, if reconnection is
proceeding across that pixel.

Canfield, 1987, "Optical Imaging Spectroscopy”, Solar Physics, 113, 95 (1987)



downflows in IRIS-scale “"elementary bursts”
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modeling with either nonthermal
electron heating (Graham+20) or
conduction heating (Ashfield+21)
reproduces the downflow

(condensation) of timescale ~30s,
even with longer heating

necessary for the long radiation.



upflows in IRIS-scale “elementary bursts”
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RH modeling (with
impulsive nonthermal
electron heating) of
spectra & photometry of
the observed IRIS-scale
“elementary” bursts
reproduces the
condensation of ~30s,
yet the evaporation
upflow and X-ray
radiation timescales are
too short.

- additional heating?
- structure of heating?
- mechanism of heating?



COUNTS PER SECOND

next-order scale of “elementary bursts”
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Where are they?

Fermi, Knuth+20



next-order scale of “elementary bursts”
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In one study (Wang+00), HXR bursts of ~1 sec is located on only one
flare kernels, indicating that not all places be heated by bursty HXR
electrons. Thermal conduction? Alfven waves? XUV irradiation?



next-order scale of “elementary bursts”
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High-resolution, high-
cadence imaging spectral
observations may help
diagnose heating
mechanisms

at fine scales of
different spatial
structures, such as the
ribbon front or kernel
(Xu+16, Kerr+20,24,
Polito+23), and also
during the evolution of
these structures.



next-order scale of “elementary bursts”

AlA 1600

High-resolution, high-cadence
imaging spectral observations
at multiple lines may help
diagnose heating mechanism
at fine scales and during the

evolution of an “elementary
burst”.

Riley+24
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next-order scale of “elementary bursts”

Ca II IR line
profiles of
adjacent
flaring pixels.
across the
VisP slit (0.1%,
1.5s) and
along the slit
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Summary:

Flare energy release occurs in a large number of packets, or
“elementary bursts”, which may be “resolved” and traced in the
chromospheric observations.

Observations of the flaring chromosphere, aided with other
observations, provide diagnostics of energetics, or the characteristics
of flare heating: when, where, by how much, for how long, and through
what mechanism, is the flaring atmosphere heated.

With progress made in understanding these processes, we are still left
with some basic questions regarding flare heating.

- can optical/UV spectroscopy determine heating mechanism?
- what is the nature of slow “cooling”?

- are non-thermal electrons ubiquitous?

- what governs the production of nth electrons?



