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Aglaé Kellerer

Big Bear Solar Observatory,

40 386 North Shore Lane, Big Bear City, CA 92314 - 9672, USA

kellerer@bbso.njit.edu

First multi-conjugate adaptive-optical (MCAO) systems are currently

being installed on solar telescopes. The aim of these systems is to increase

the corrected field-of-view with respect to conventional adaptive optics.

However, this first generation is based on a star-oriented approach, and it

is then difficult to increase the size of the field-of-view beyond 60′′ − 80′′

in diameter. We propose to implement the layer-oriented approach in solar

MCAO by use of wide-field Shack-Hartmann wavefront sensors conjugated

to the strongest turbulent layers. The wavefront distortions are averaged

over a wide-field: the signal from distant turbulence is attenuated and the

tomographic reconstruction is thus done optically. The system consists of

independent correction loops, that only need to account for local turbulence:

the sub-apertures can be enlarged and the correction frequency reduced.

Most importantly, a star-oriented MCAO system becomes more complex with

increasing field size, while the layer-oriented approach benefits from larger

fields – and will therefore be an attractive solution for the future generation

of solar MCAO systems. c© 2012 Optical Society of America

OCIS codes: 110.0115, 110.1080

1. Introduction

1.A. The current approach to solar MCAO

The need for exact solar observations has led to the development of adaptive-optical (AO)

correction systems on solar telescopes [1]. Classical AO systems are limited by the isopla-

natic angle of atmospheric turbulence and solar images are only corrected within, typically,

10 arcseconds. In multi-conjugate adaptive optical (MCAO) systems, the use of several de-

formable mirrors allows to correct the wavefront distortions within larger field-of-views. Each

mirror is optically conjugated to a different altitude and a phase-distortion produced at
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height h is then corrected by the mirror whose conjugate altitude is closest to h. This ideal

scenario is in practice limited by our incomplete knowledge of the altitude distribution of

turbulence. In this article we suggest to improve the sensing stage of solar MCAO systems

by implementing a layer-oriented approach [2], [3], [4].

Until now, solar MCAO experiments have exclusively used a star-oriented approach where

each sensor measures wavefront distortions within a narrow field (on a star in nighttime

astronomy, hence the name). The height distribution of turbulence is then determined via

tomography. This approach has been demonstrated successfully on several telescopes, e.g.

the VTT on the Canary Islands [5] and the DST in New Mexico [6]. The atmospheric

turbulence was corrected within roughly 45′′× 45′′ compared to 10′′× 10′′ for traditional AO

systems. However, in the star-oriented approach larger field-sizes will be difficult to correct.

Berkefeld et al. [7] discuss this in the context of the future EST that aims at correcting the

turbulence within 60′′ × 60′′. The main difficulty lies in the profile reconstruction. Indeed,

the retrieval of the turbulence volume from measurements along a few discrete directions is

an ill-conditioned problem: with a finite number of sensing directions, a substantial fraction

of the atmospheric volume is sensed by only one sensor (see Fig. 1). Triangulation is then

not possible and the origin of the distortion can not be determined. Even when two sensors

measure a correlated signal, the correlation might accidentally originate from two different

turbulent cells. The control loop of a star-oriented MCAO system is therefore fed with prior

information about the Kolmogorov nature of atmospheric turbulence and about the current

atmospheric profile [8], [9]. The indetermination in the tomographic reconstruction is then

not solved, but the correction is – on average – more right than wrong [10].

1.B. Layer-oriented MCAO

The layer-oriented approach to MCAO has been introduced for nighttime observations [2],

[3], [4]: each deformable mirror works in closed loop with a wavefront sensor – mirror and

sensor being conjugated to the same altitude. The principle employs pyramid wavefront sen-

sors. For each deformable mirror, a group of pyramid sensors images different stars onto

the same location in the focal plane and the wavefront distortions are sensed on the super-

posed image. Distortions generated at the conjugate altitude do not vary within the field

and are unaffected by the averaging, while distortions introduced at a large distance tend to

cancel (see Fig. 2). The signal measured by the sensor is thus an approximation of close-by

turbulence.

There are many advantages to nighttime layer-oriented MCAO, but the inherent limitation

in the quality of the profile reconstruction remains unchanged: due to the finite number of

reference stars, a substantial fraction of the atmospheric volume is not accessible to triangu-

lation (see Fig. 1). The Sun however allows for an infinite number of reference targets within
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the field-of-view, so that the indetermination in the profile reconstruction can in principal be

overcome. The use of several pyramid-sensors is then unsuitable, since we aim at averaging

the wavefront distortions continuously over the field. A continuous sampling would require

an infinite number of pyramid sensors – or, at least, as many sensors as there are isoplanatic

patches within the field-of-view.

2. Solar layer-oriented MCAO

2.A. Design

We propose to implement the layer-oriented approach in solar MCAO using Shack-Hartmann

(SH) sensors. AO systems for solar observations are already based on these sensors [1]. Their

use introduces a difficulty compared to nighttime observations on distant stars: when the

object observed with a SH sensor is a point-source, typically a distant star, each lenslet forms

a disc-like 2× 2 pixel image and the image-centers are computed in terms of a photocenter

calculation. Solar images are extended and the wavefront shifts need to be assessed by cor-

relating ∼ 20× 20 pixel images. The size of the image is a compromise between the quality

of the correlation (a large enough image with sufficient details) and the requirement to sense

the wavefront distortions within a narrow field. Indeed, the distortions are averaged over a

surface that increases with altitude and field size, so that the signal from high layers gets

attenuated on larger fields.

We suggest to associate a SH sensor to each deformable mirror and to purposely correlate

wide-field images. Distortions introduced close to the conjugate height of the mirror do not

vary within the field, while distortions from distant layers vary and tend to cancel. The

reconstruction of the turbulence profile is thus done optically.

The principle is sketched on Fig. 3. Fig. 4 details the design for a 2 m diameter telescope

with a f1 = 80 m focal length and an α = 100′′ diameter field-of-view. Assume a layer at 20 km

distance with a Fried parameter r0 = 0.4 m. If the collimator has a focal length f2 = 0.25 m,

a convenient diameter for the SH lenslets is: p = r0 f2/f1 = 1.25 mm. This ensures one

sampling point per Fried cell. The diameter of the meta-pupil at 20 km equals 11.7 m, the

SH array should thus consist of 29×29 lenslets. The images from the SH-lenslets are adjacent

without overlap, if the focal length of the SH-lenslets equals: fL = r0 (f2/f1)
2/α = 8 mm.

The angular resolution is determined by the size of the pixels: it equals 0.′′56 (1.′′2) for 7µm

(15µm) pixels. The cross-correlation is then done over 180×180 pixel (85×85 pixel) images,

at 1-2 kHz. The final choice is a compromise between calculation times (not too many pixels)

and the quality of the cross-correlation (enough details, hence small pixels).

A similar set-up was proposed by R. Dunn in order to measure the instrumental aberrations

within the field [11]. The possibility to use SH sensors for layer-oriented MCAO has been

proposed by E. Ribak for nighttime astronomy [12]. To our knowledge it has not yet been put
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into practice. The main attraction of the method proposed by R. Ragazzoni is the co-adding

of light from several stars. Faint stars that can not be used as reference when imaged alone,

can then contribute to the signal. This advantage is lost with SH sensors. In solar astronomy

flux is not an issue, and the main advantage of the layer-oriented approach is different: since

the entire field is used for wavefront sensing, the control-loop automatically finds the optimal

correction for the entire field. In the star-oriented approach the optimal correction for the

entire field is extrapolated from measurements along a finite number of directions. And the

quality of that extrapolation is limited by the quality of the tomographic reconstruction.

The sensors of a layer-oriented MCAO system should be directed towards granular patterns

rather than solar spots, so that the different regions in the field contribute similarly to the

signal. In the presence of bright spots the system resembles a nighttime layer-oriented MCAO.

The main advantage of this method is the use of the entire field for wavefront sensing.

Another advantage lies in the fact that the mirror-sensor pairs form independent correc-

tion loops. Each sensor can therefore be tuned to the characteristic scales of its associated

layer: the sub-aperture size can be enlarged and the correction frequency decreased. The

ground layer, for example, is expected to be strong but slow, so that the sensor should be

designed with enough sub-apertures, but the correction frequency can be chosen below the

usual 2000 Hz. The advantages and drawbacks of the star- and layer-oriented approaches are

summarized in Table 1.

2.B. Attenuation of the signal from distant layers

For multi-conjugated AO the atmosphere is approximated by a finite number of layers at

selected altitudes. In the layer-oriented approach to MCAO, the phase distortion due to a

particular layer is measured by a sensor that is positioned in its image plane. The sensors

provide a focused image of this layer, but the image contains also the out-of-focus images

of the fluctuations in the other layers. These unwanted contributions are images of the

fluctuation patterns that are each averaged out over circular domains that depend on the

field-of-view, α (typically 50′′− 200′′) and on the altitude difference between the conjugated

and the non-conjugated layer.

As seen in the image plane of layer i at altitude hi the image of layer k at altitude hk, is

averaged over diameter, di,k:

di,k = α|hi − hk| (1)

At each point the phase value, f , is replaced by the phase average over the disc of diameter

di,k centered at the point. Since only the phase differences are of concern the entire phase

screen is normalized to zero mean value.

The averaging tends to reduce the amplitude of the phase fluctuations. Fig. 5 indicates in

terms of values from a simulated phase screen the character of this reduction. The lower series
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of phase shifts corresponds to the values measured by a linear array of 40 sensor elements

positioned unit length apart; the Fried parameter is taken as unit of length; absolute values

are not specified since they depend on the fraction of the atmosphere that is ascribed to a

single layer. The upper curves represent the changed signals that result when the phase field

is averaged over larger diameters. Although, for this example, the values relate all to the same

cross-section of the same simulated phase field, the values for larger d can not be deduced

from those for smaller d, because they depend on the phase distribution in an increasingly

larger domain around the line segment. As one would expect, the averaging reduces most

strongly the short wave fluctuations.

To quantify the contribution of the out-of-focus image components to the entire signal one

needs to compare the phase variance in the original and the degraded images. The variance

of the wavefront phase over a circle of diameter d is given by (see for example Roddier [13]):

σ2(d) ∝
∫ 2π

θ=0

∫ +∞

ν=0

WF (~ν)Gd(~ν) dν ν dθ (2)

where WF is the power spectrum of the phase fluctuations and Gd is the point-spread function

through a circular opening of diameter d:

WF (~ν) ∝
(
ν2 +

1

L2
0

)−11/6
(3)

Gd(~ν) ∝
(

J1(πνd)

πνd

)2

(4)

L0 is the outer scale of turbulence. In the case of square sub-apertures, typically used with

SH sensors, Gd(~ν) ∝ sinc2(πνd). Circular openings are assumed in the following, but the

calculations can easily be repeated for square apertures.

An integration over all directions of the frequency plane leads to:

σ2(d) ∝
∫ +∞

ν=0

ν

(
ν2 +

1

L2
0

)−11/6 (
J1(πνd)

πνd

)2

dν (5)

Fig. 6 illustrates σ2(D)/σ2(d) for different values of the outer scale L0: the attenuation of

the signal strongly depends on L0. Nighttime values of the outer scale lie between a few

tens and a few hundred meters [14]. Measurements of daytime values are sparse, but appear

to suggest much smaller values between 1 and 10 m [15], [16]. A small outer scale benefits

layer-oriented MCAO, since the attenuation of the signal from distant layers is then stronger.

2.C. Note on phase, slope and curvature measurements

Eq. 5 can be extended to the case of slope (sl) and curvature (cv) measurements:

5



σ2
sl(d) ∝

∫ +∞

ν=0

dν · ν3
(
ν2 +

1

L2
0

)−11/6 (
J1(πνd)

πνd

)2

(6)

σ2
cv(d) ∝

∫ +∞

ν=0

dν · ν5
(
ν2 +

1

L2
0

)−11/6 (
J1(πνd)

πνd

)2

(7)

The attenuation of the signal from a mis-conjugated layer is smallest in the case of direct

phase measurements and it is largest for curvature measurements, see Fig. 7. It is tempting,

but incorrect, to conclude that Roddier curvature-sensors are optimally fitted for layer-

oriented MCAO [17]: no matter which quantity is measured – phase, slopes or curvature –

the phase values need to be restored to shape the deformable mirror. This is also the case

for the bi-morph mirrors that are typically used in combination with curvature sensors. Bi-

morph mirrors are controlled in curvature (the applied voltage changes the local curvature of

the mirror surface), so that the phase values need not be computed by the control loop, but

they are restored by the mirror itself. As indicated by F. Roddier, bi-morph mirrors solve

the Poisson equation themselves [17]. Accordingly, it is indeed the attenuation of the phase

values that matter in the present study.

3. Applications

3.A. Ground layer adaptive optics

Rimmele et al. tested a ground-layer adaptive optical (GLAO) correction at the DST in

New Mexico [6]: the group used a SH sensor conjugated to the ground and averaged the

wavefront distortions over a 42′′×42′′ field of view. The average slopes were used to control a

deformable mirror conjugated to the ground. This should have led to the suppression of the

ground layer only and thus to a homogeneous correction throughout the field. The experiment

was however unsuccessful. Fig. 8 shows that a SH sensor conjugated to the ground, with a

42′′×42′′ field-of-view is sensitive to turbulence up to almost 10 km for an outer scale of 1 m.

For a more realistic outer scale of 10 m, the sensor is sensitive to turbulence up to 50 km. A

5’ field-diameter is required to efficiently attenuate turbulence above 5 kilometers.

We use the residual variance of the fitting error as a norm to assess the attenuation of the

signal. The fitting error corresponds to the part of the wavefront that is not corrected by the

mirror due to the finite number of actuators. The uncorrected phase-variance over a circular

area of diameter d equals [18]:

σ2 = 1.03

(
d

r0

)5/3

(8)

The residual phase-variance after AO correction is given by [19]:

σ2
r = µ

(
d

r0

)5/3

(9)
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where d is the spacing between two actuators. In a layer-oriented approach, the diameter of

the sub-apertures will be set equal to the actuator spacing, d. The value of µ depends on the

shape of the actuators’ influence-functions and equals 0.2 for typical mirrors with Gaussian

like influence-functions. The fitting error thus amounts to 20% of the initial phase variance

over the sub-aperture. We assume that the signal of a layer is negligible if its variance is

attenuated by a factor 5. This applies if the Fried parameter of the layer equals the sub-

aperture size of the sensor, d: for a stronger layer the attenuation factor needs to be larger,

while a weaker layer rapidly falls below the threshold of the fitting error.

Fig. 8 shows that the reduction of the phase-variance is slow: fields several arcminutes

in diameter are required to attenuate the signal from layers above 2 − 3 km altitude. This

appears to exclude the layer-oriented approach for GLAO systems, at least with current

technology.

3.B. Multi-conjugate adaptive optics

In multi-conjugate adaptive optics smaller fields can be used: each sensor is then somewhat

sensitive to turbulence that its associated mirror is not supposed to correct.

Diolaiti et al. have demonstrated that the correction loop is nonetheless stable [20]. Each

deformable mirror corrects for its own layer and for smoothed versions of the non-conjugated

layers. In order to avoid an over-correction of one layer by several mirrors, we suggest to mea-

sure the amplitude of signals contributed by distant layers, and to use these measurements

to adjust the gain of the AO loops.

Approximate the atmosphere by a number L of horizontal layers (li), i = 1, 2, ..L at heights

hi. In actual measurements L = 3 may suffice, but for the general considerations a larger

number is considered.

Assume that sensors in the image planes conjugated to the layers (li) measure the phase,

Fi(x, y), of the wavefronts that traverse the point (x, y) in (li). Fi(x, y) refers to one measure-

ment by sensor i; it is the mean value over all rays that traverse (x, y) within the circular

field of view of diameter say α = 100′′.

Fi(x, y) is the mean phase due to the entire atmospheric traversal of the rays, i.e. it contains

the contributions from all layers:

Fi(x, y) =
L∑
l=1

fi,l (10)

∑L
l=1 fi,l is the sum of the mean phases due to the individual layers. The averaging needs

to be done over the intersection of the field, i.e. the viewing-cone, with the layer. The surface

of the intersection depends on the relative distance between the layer and the sensor. Given

a Kolmogorov phase screen (Kps), for l = i the term fi,l is a single random value on this
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screen – the wavefront phase, that can be directly applied to the deformable mirror. For l 6= i

the term fi,l is a random value of the modified Kps that is obtained by blurring the Kps, i.e.

by averaging the phase over the cross-section of size r × r, where r depends on the angle α

and the separation between the layers i and l.

In other words, the individual contributions fi,l can be obtained from the original Kps

and its appropriate degradations. The variance of fi,l for specified blurring parameters, r,

has been determined in Section 2.B (see Fig. 6). There is, of course, an added coefficient

gl = C2
n(l) dh that depends on the layer thickness and its turbulence intensity.

Consider the variance gl σ
2
i,l of fi,l. The fluctuations in separate layers are statistically

independent. Accordingly the contributions, σ2
i,l, to the variance σ2

i add up:

σ2
i =

L∑
l=1

gl σ
2
i,l (11)

σ2
i,l is the variance of the degraded Kps for unit thickness and unit turbulence intensity

of the layer. gl is the weight factor which equals the product of the layer thickness and the

turbulence intensity.

The original and the blurred phase screens provide the parameters σ2
i,l and the σ2

i are

measured. Since there are L equations, one readily computes the L weight factors gl, i.e. the

relative contributions of the layers to the phase fluctuations.

Knowing the gl facilitates then the computation of the phase distortions fi,i(x, y) caused

at the various locations of the different layers on the basis of the observed mean phases,

Fi(x, y), at these locations. The fi(x, y) are the values for correcting layer (li).

4. Practicality of the star- and layer-oriented approaches

Approximate the atmosphere by L layers at the conjugate altitudes, hi, of the deformable mir-

rors. Each layer contains a fraction fi of the turbulent energy and the Fried parameter in each

layer equals r0/f
3/5
i . Let α be the angular diameter of the corrected field and D the telescope

diameter. The number of actuators on each deformable mirror equals:
(

(D + hi α) f
3/5
i /r0

)2
,

where D is the telescope diameter.

– In the layer-oriented approach the number of sensors equals the number of deformable

mirrors, L, and each sensor has as many sub-apertures as there are actuators on the

deformable mirror. Strictly speaking there are 4 actuators at the corners of each sub-

aperture. But, as the number of actuators increases, the number of sub-apertures tends

towards the number of actuators. The total number of sub-apertures, NS, then equals:

NS =
L∑
l=1

(
(D + hl α) f

3/5
l /r0

)2
(12)
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– In a star-oriented approach, the sensing stage typically consists of one high-order on

axis sensor with (D/r0)
2 sub-apertures, and one low order, wide-field sensor with

(D/rH)2 sub-apertures. rH = r0 (
∑L

l=2 fl)
−3/5 is the high-altitude Fried parameter.

The number of sub-apertures should be larger than the number of actuators:

NS =

(
D

r0

)2

+ (S − 1)

(
D

rH

)2

≥
L∑
l=1

(
(D + hl α) f

3/5
l

r0

)2

S ≥
∑L

l=1(1 + hl α/D)2 f
6/5
l − 1∑L

l=2 f
6/5
l

+ 1 (13)

S: number of sensing directions.

In addition, the meta-pupils should be correctly covered. If the coverage is incomplete,

some actuator voltages need to be extrapolated. Since the mirror with the highest

conjugation-altitude, hL, has the largest meta-pupil, this requirement translates into:

S D2 ≥ (D + hL α)2

S ≥ (1 + hL α/D)2 (14)

The resulting numbers of sub-apertures are represented on Fig. 9. The numbers of sub-

apertures obtained from Eqs. 12 and 13 are similar since they reflect the same requirement: as

many sub-apertures as actuators. For the star-oriented approach, this leads to an insufficient

coverage of the mirror-pupils. The condition of well sampled meta-pupils (Eq.14) implies

more sub-apertures, especially for the GREGOR and EST. This is because GREGOR and

EST are (will be) located on mountain sites, where observations are carried out in the

morning hours with large zenith angles. A given turbulent layer appears more distant and

the meta-pupils are larger than at the NST.

As the field-size increases, the number of sensing directions in the star-oriented approach

becomes prohibitively large, see Fig. 10. One will then eventually opt for configurations where

the mirror-pupils are incompletely sensed. This is already the case with GREGOR: the 19

sensing directions cover a 33 m2 surface at the highest conjugate altitude of 25 km – well

below the 60 m2 surface of the mirror pupil within the 60′′ × 60′′ field of view. The planned

upgrade to 37 sensing directions will permit a complete coverage (65 m2) of the highest

meta-pupil.

In the layer-oriented approach the slopes are averaged over the field-of-view and all meta-

pupils are entirely sensed. It is interesting to note the complementarity of the layer- and star-

oriented approaches: the difficulty involved with the tomographic reconstruction appears to

limit the possibility of the star-oriented approach to correct field-sizes beyond roughly 60′′,

see for example the discussion in Berkefeld [7]. The layer-oriented approach fails below ∼ 50′′

and benefits from increasingly large fields-of-view.

9



5. Conclusion

We have described a layer-oriented approach to solar multi-conjugate adaptive optics. The

implementation is based on cross-correlating Shack-Hartmann sensors that are already widely

used for solar AO systems. Each deformable mirror should be paired with a wide-field Shack-

Hartmann sensor: the sensor and the mirror are conjugated to the same altitude and work

in a closed loop. The sensor measures the average wavefront distortion over the entire field-

of-view via a cross-correlation of a wide-field image. The process of averaging attenuates

the signal from distant layers and the sensor signal represents then adequately the nearby

turbulence. The tomographic reconstruction is done optically.

The main advantage of the approach is that the wavefront distortions are sensed within the

entire field-of-view. The quality of the profile reconstruction is thus enhanced with respect

to star-oriented MCAO where the turbulence is sensed along a few discrete directions. In

addition, each mirror-sensor pair forms an independent control loop, the parameters of which

merely need to account for local turbulence: the sub-apertures can be enlarged and the

correction frequency reduced.

We have derived the altitude-sensitivity of a sensor as a function of field-size and outer

scale: the attenuation of the signal is slow and appears to exclude the use of the layer-oriented

approach for ground layer adaptive optics. In a multi-conjugate system, each mirror corrects

its conjugate layer and smoothed images of the mis-conjugated layers. The AO correction is

stable as long as the loop-gains are not too high. A procedure to adjust the gains has been

suggested.

The layer-oriented approach benefits from larger field-sizes. In contrast, the currently used

star-oriented approach is an extension of a conventional AO system and becomes more com-

plex as the field size increases – in terms of required number of sub-apertures and compu-

tational load. The layer-oriented approach will thus be an attractive solution for the future

generation of solar MCAO systems.
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Fig. 1. Problematic of the star-oriented approach. Outside the blue, M-shaped

area, there are no redundant measurements: Turbulence in the two purple

squares, for example, yield the same sensor measurement and can not be dis-

tinguished. The solution consists in applying a correction that will – on average

– be more right than wrong: the control-loop is informed about the Kolmogorov

nature of turbulence and about the current profile of atmospheric turbulence.

DM: deformable mirror.
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Fig. 2. Principle of the layer-oriented approach: the wavefront distortions

are introduced at an altitude where the wavefronts from 5 stars are disposed

as shown in the left panel. If the sensor is conjugated to an altitude where

the wavefronts are disposed as shown in the right panel, the distortions are

smoothed out and the sensor signal is attenuated.

12



Fig. 3. Principle of the layer-oriented approach for solar observations: the

MCAO system consists of independent AO loops. Each loop contains a sen-

sor and a mirror conjugated to a dominant turbulent layer. The SH sensors

measure the average wavefront distortions inside the entire field-of-view. The

process of averaging attenuates signal from distant layers.
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Fig. 4. Design example for a 2 m telescope with 80 m focal length and 100′′

field-of-view. A layer at 20 km altitude with a Fried parameter r0 = 0.4 m is

imaged onto the SH-array. The resulting parameter values for the lenslet array

and the detector are indicated in the text.
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Fig. 5. Cross section through part of a wavefront averaged over discs of different

diameter, d. The unit of length is taken to be the Fried parameter. The length

of the segment is 40, the points are plotted a unit distance apart. The averaged

values depend on the phases within a distance up to d/2 from the line segment.
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Fig. 6. Variance of the mean wavefront phase over circles of diameter D and

d (see Eq. 5). For a small outer scale, L0, the attenuation of the signal from

distant layers is more efficient.
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Fig. 7. Relative contribution of each layer to phase, slope and curvature

measurements. The curves are calculated in terms of Eqs. 5–7 with an outer

scale L0 = 10 m. The contribution of a distant layer (D >> d) is smallest for

curvature measurements.
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Fig. 8. Minimum altitude-difference between the layer and the sensor for the

variance of the signal to fall below the fitting error. The x-axis indicates the

angular diameter of the circular field-of-view. The results are derived from

Fig. 6.
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Fig. 9. Number of sub-apertures required in the layer and star-oriented ap-

proaches (resp. blue and black). Full black line: the meta-pupil of the highest

deformable mirror is entirely sensed, dashed black line: as many sub-apertures

as actuators. Circles: number of sub-apertures for the MCAO systems on NST,

GREGOR and EST. The characteristics of these systems are listed, with ref-

erences, in Table 2.
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Fig. 10. Black lines: Number of sensing directions required in the star-oriented

approach. Full line: the meta-pupil of the highest deformable mirror is entirely

sensed, dashed line: as many sub-apertures as actuators. Circles: number of

sensing directions for the MCAO systems on NST, GREGOR and EST. Blue

line: Number of sensors required in the layer-oriented approach. The charac-

teristics of these systems are listed, with references, in Table 2.
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Star-oriented Layer-oriented

Only 2 detectors As many detectors as deformable mir-

rors

Distortions not sensed over the entire

field-of-view

Distortions sensed over the entire field-

of-view

AO loop frequency imposed by the

fastest layer, typically > 2000Hz. Sub-

aperture size imposed by the strongest

layer

Each sensor is tuned to the character-

istic scales – r0(h) and τ0(h) – of its

layer: larger sub-apertures, lower cor-

rection frequencies

Correlation on few pixels to minimize

field extension: larger noise on slope es-

timates

Correlation on many pixels: less noise

on slope estimates

Correlation on few pixels: faster com-

putation

Cross-correlation on many pixels:

longer computation times

Table 1. Qualitative comparison of the star- and layer-oriented approaches for

solar MCAO. Advantages in blue, drawbacks in red.
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Telescope

diameter

Mirror altitudes and as-

sociated r0

Field

directions

Sub-aperture size –

on/off axis sensors

NST 1.6 m 0 – 3 – 6 km 5 8– 25 cm

14 – 21 – 40 cm

GREGOR 1.5 m 0 – 8 – 25 km 19, 37 10 – 30 cm

14 – 23 – 26 cm

EST 4 m 0 – 5 – 9 – 15 – 30 km 19 8 – 25 cm

14– 30 – 41 – 33 – 48 cm

Table 2. Parameter values of three planned MCAO systems: NST in California,

GREGOR and EST on Canary Islands. The parameter values for GREGOR

and EST are taken from Berkefeld et al. [7], [21]. The values for NST were

determined from profiles of the atmospheric turbulence [22]. All three systems

use the star-oriented approach inside a 60′′ × 60′′ field. This table is used for

Figs. 9 and 10.
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