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Solar Data Science

Solar Data Science = Using Artificial Intelligence (Al), Machine
Learning (ML), Cyberinfrastructure (Cl) and Big Data to Understand
Solar Astronomy and Forecast Space Weather

Solar data science provides rich datasets with high complexity

Al/ML can learn patterns, relationships, associations from historical
data and make predictions on unseen future testing data (we are
mainly interested in end-to-end deep learning)



Challenges for Al/ML in Solar Data Science

Although solar astronomy and space weather are filled
with big data, we often lack labeled training data
(ground truth data with labels) that can be used to train
an Al/ML model. This is different from Al/ML in computer
science in which there are a lot of labeled training data
(e.g., ImageNet).

Our approach: adopt the expert-in-the-loop paradigm
and perform Al/ML via data integration



Why Al/ML?

We already have computational tools (e.g., to detect fibrils), why is
Al/ML needed?

TwO reasons:

1. Al/ML detects fibrils through making predictions, and hence is
often faster than computational tools which involve time-
consuming computation. We aim at building near real-time
ope(rjational and forecasting systems, so Al/ML better meets our
need.

2. Al/ML models have inference and generalization capabilities and
often produce better results than computational tools.
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Al/ML for Fibril Detection

[Jiang et al. ApJS 2021]
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Al/ML for Fibril Detection
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Al/ML for Fibril Detection
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Bayesian Deep Learning Model for Fibril Detection
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Al/ML for Magnetic Flux Tracking

flux element disappearance [Jiang et al. ApJS 2020]
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S-N (arcsec)

Al/ML for Magnetic Flux Tracking

flux element appearance
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Al/ML for Magnetic Flux Tracking
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Deep Learning Model for Magnetic Flux Tracking
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Al/ML for Stokes Inversion

[Liu et al. ApJ 2020, Jiang et al. 2022]
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Al/ML for Stokes Inversion

Stokes
Profiles
/4
11
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Q, U, V (calibrated by I) are used as input.
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Al/ML for Solar Vector Magnetogram Generation
[Jiang et al. Solar Physics 2023]

Original Bx Original By

Al-Generated Bx | Al-Generated By

Use Al-Generated Transverse Components (Bx, By) of Magnetic Field to Study Solar Flare Activity in Multiple Solar Cycles
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Al/ML for Improving Spatial Resolution of SOHO/MDI Magnetograms

[Xu et al. Solar Physics 2024]
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Al/ML for Solar Irradiance Reconstruction
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SATIRE-M (Spectral And Total Irradiance REconstruction model - Millennia), based on sunspot numbers, provides
decennial averages and reconstructs the total solar irradiance (TSI) over the last 9,000 years. Our TSINet reconstructs TSI
for additional 1,000 years. Currently we work on solar EUV reconstruction (SOHO/SEM, TIMED/SEE, SDO/EVE).



Al/ML for Predicting Solar (Activity) Indices F10.7 and F30 (Proxies of Solar EUV Irradiance)
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Space Weather Events: Solar Flares

Image credit: NASA/SDO/Goddard
https://spaceplace.nasa.gov/solar-activity/en/
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Space Weather Events: Coronal Mass Ejections (CMEs)

2014-09-19 17:31:11 UT
SDO/AIA 171 A

Filament Eruption
Leading to a CME Observed
CME arrival time:

18 hr—138 hr

Source: AlA Filament Eruption Catalog
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Space Weather Events: Solar Energetic Particles (SEPs)

Source: NASA

SEP arrival time:
<=1hr

Events last for
days-weeks

25



Al/ML for Predicting Solar Eruptions, Space Weather
Events, and Geomagnetic Activity

» Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products & Random Forest Algorithm [Liu et al. ApJ 2017]
» Predicting Solar Flares Using a Long Short-term Memory Network [Liu et al. ApJ 2019]

» Predicting Coronal Mass Ejections Using SDO/HMI Vector Magnetic Data Products and Recurrent Neural Networks [Liu et
al. ApJ 2020]

» Predicting Solar Energetic Particles Using SDO/HMI Vector Magnetic Data Products and a Bidirectional LSTM Network
[Abduallah et al. ApJS 2022]

» Solar Flare Index Prediction Using SDO/HMI Vector Magnetic Data Products with Statistical and Machine-learning Methods
[Zhang et al. ApJS 2022]

» Predicting CME Arrival Time through Data Integration and Ensemble Learning [Alobaid et al. Frontiers in Astronomy and
Space Sciences 2022]

» Operational Prediction of Solar Flares Using a Transformer-Based Framework [Abduallah et al. Scientific Reports 2023]
» Estimating CME Mass and Kinetic Energy by Fusion of Multiple Deep-Learning Models [Alobaid et al. ApJL 2023]

» A Machine Learning Approach to Understanding the Physical Properties of Magnetic Flux Ropes in the Solar Wind at 1 au
[Farooki et al. ApJ 2024]



Geomagnetic storms due to CMEs,
March 8, 2012, Iceland
Source: nasa.gov

Al/ML for Geomagnetic Index
Prediction

We use deep learning to predict Dst (disturbance storm time)
index values focusing on intense storms (-250 nT < Dst < -50 nT)
and super storms (Dst < -250 nT).

There are many geomagnetic indices: Dst, Kp, ap, Ap, SYM-H,
etc.

Use deep learning to predict geomagnetic indices in storm time
and quiet time.
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[Abduallah et al. Space Weather 2024]
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Investigating how space weather impacts

satellite drag and orbits

Source: NASA

Investigate how solar
indices and
geomagnetic indices
affect satellite drag and
orbits (thermospheric
neutral density model)

Joint work with Rutgers
University
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12003-10-29-17:36

Al/ML for Improving
Temporal Resolution

Use GenAl to improve the
cadence of SOHO/MDI
magnetograms from 96
minutes to 12 minutes. True
(synthetic, respectively)
magnetograms are enclosed
by black (yellow, respectively)
boundary lines.
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XAl Methods

Global interpretation (provide explanation based on the whole test set)
For example, a home loan is denied (reasons: bad credit, short credit history,
insufficient income)

Local interpretation (provide explanation based on a specific test instance)
For example, John’s home loan is denied (reason: John is bankrupt recently)

Both global and local interpretations are used to explain the decision-making
process of an Al/ML model. XAl methods are particularly useful when the
Al/ML model uses many physical parameters (magnetic field parameters,
solar wind parameters, etc.) to make predictions.
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SHAP Summary Plot

Scalar_B

BZ_GSE

(Global Interpretation) Use an
XAl tool, SHAP, to explain/rank
the importance of 7 solar wind
parameters in the input for
Disturbance Storm Time (Dst)
E_elecrtric_field index prediction

SW_Plasma_Speed

SW_Plasma_Temperature

Flow_pressure

SW_Proton_Density

0 2 2 6 8
mean(|SHAP value|) (average impact on model output magnitude)
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DeepSun: ML-as-a-Service for Solar Flare Prediction

[Abduallah et al. RAA 2021]
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Cyberinfrastructure for Advancing Space Weather Research

SolarDB: A Cyberinfrastructure for Advancing Space Weather Resea

New Jersey Institute of Technology

# About Q Databases Q Tools 2 Data Sources @ Help

Technologies and infrastructure are affected
by space weather events (Credit: NASA).

Project Description

This cyberinfrastructure, dubbed SolarDB, is a comprehensive resource accessible on the Internet. It comprises databases, tools, and
computing services for advancing space weather research. These databases and tools play an important role in analyzing adverse space
weather effects and predicting extreme space weather events. The data in SolarDB are gathered from ground-based observatories and
satellite missions. Major data sources include SDO/HMI, SDO/AIA, Global H-alpha Network, and Big Bear Solar Observatory data archives.
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Cyberinfrastructure for Advancing Space Weather Research

# nature.njit.eduy,

£ Type here to search

Flare Database with M5.0 or Larger Flares

Please select the flare type:

® Significant flares Control data

Date filter
Active region filter

Flare filter

Submit Query

Active region number: 11890 X3.3 flare's starting time: 2013-11-05 22:07:00

Please select one of the following data sources:

® Solar Dynamics Observator DO)

i.B hmi.M

hm

Watch quick look movie ] [ Download all FITS fils

Number of files found: 1672

hmi.sharp_cea_7205.3341.20131104_221200_TAl.Bp_err.fits

hmi.sharp_cea_720s.3341.20131104_221200_TALBp.fits

hmi.sharp_cea_720s.3341.20131104_221200_TAlBr_err.fits

hmi.sharp_cea_720s.3341.20131104_221200_TALBr fits

hmi.shmp7:9377205.3341.201 31104_221200_TAlBt_err.fits

hmi.sharp_cea_720s.3341.20131104_221200_TAlBt.fits

hmi.sharp_cea_720s.3341.20131104_221200_TAlbitmap.fits

hmi.sharp_cea_720s.3341.20131104_221200_TAl.Dopplergram.fits

hmi.sharp_cea_720s.3341.20131104_221200_TAl.continuum.fits

hmi.sharp_cea_720s.3341.20131104_221200_TAl.conf_disambig.fits

hmi.sharp_cea_720s.3341.20131104_222400_TAl.Bp.fits

hmi.sharp_cea_720s.3341.20131104_221200_TAl.magnetogram.fits

hmi.sharp_cea_720s5.3341.20131104_222400_TALBr.fits

hmi.sharp_cea_7205.3341.20131104_222400_TAl.Bp_err.fits

hmisharp_cea_720s.3341.20131104_222400_TAl.Bt.fits

hmi.sharp_cea_7205.3341.20131104_222400_TAl.Br_err.fits

hmisharp_cea_7205.3341.20131104_222400_TAl.Dopplergram fits

hmisharp_cea_7205.3341.20131104_222400_TAl.Bt_err.fits
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v [ S0laDB: A Cyberinfrastructure X+ - X

&« C 2% nature.njit.edu/solardb/

»

O TAWAN [ NBA [ SOLARPH [ CHINA [ NASA [ DEEPLEARNING [ DATA VISUALIZATI O N

SolarDB: A Cyberinfrastructure for Advancing Space Weather Research

New Jersey Institute of Technology

'

Big Bear Solar Observatory (Historic Observations)

Date filter
Active region filter

Instrument filter

Submit Query

A y

[ Download displayed data in JSON format ] [ Clear Result ]

Table of reocrds
1147 records are retrieved based on the selected search criteria. 1 - 100 records are displayed.
(Note: You can re-sort the results by clicking on the column arrows, the query will re-run.)

Active Region Number + Date +1 Instrument + 4+
1574 1978-12-13 26E
1574 1978-12-14 26E
1574 1978-12-16 26E
1574 1978-12-26 26E
1574 1978-12-27 26E
1574 1979-01-13 26E
1574 1979-01-22 26E
1574 1979-01-23 26E
1574 1979-01-29 26E
1574 1979-02-07 26E
1574 1979-02-08 26E
1574 1979-02-08 26W .

457 PM
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Cyberinfrastructure for Advancing Space Weather Research

SolarDB: A Cyberinfrastructure for Advancing Space Weather Research

New |ersey Institute of Technology

Global H-alpha Network

Please select one of the following options:

® Latest images Synoptic maps Stations Instruments Daily Images

Big Bear Observatorio Observatory Uccle Solar KanzelhiOhe Catania Observatoire Huairou
Solar de de Paris Equatorial Solar Astrophysical Pic Du Solar
Observatory Coimbra Meudon Table Observatory Observatory Midi Observatory

20:54:13 UT 16:16:18 UT 06:14:00 UT 09:33:44 UT 07:38:44Z UT 11:45:00 UT 12:05:06 UT 06:31:00 UT
TJul 08. 2024 Aug 09. 2021 TJul 08. 2024 Tul 08, 2024 Jul 08. 2024 Jul 08, 2024 Tul 08. 2024 Tul 07. 2024

20:54:13 UT 16:16:18 UT 06:14:09 UT 09:33:44 UT 07:38:44ZUT 11:45:00 UT 12:05:06 UT 06:31:00 UT
Jul 08. 2024 Aug 09, 2021 Jul 08. 2024 Jul 08, 2024 Jul 08. 2024 Jul 08, 2024 Jul 08. 2024 Jul 07. 2024

- : 11:34PM
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[Abduallah et al. Scientific Reports 2023]

v I3 SolerDB: A Cyberinfrastructure . X + B o «
< » C 2 nature.njitedu/solardb/ Q % ® 3 KN -
[ TAWAN [ NBA [ SOLARPHYSICS [ CHINA [ NASA [ DEEPLEARNING [ DATAVISUALIZATL. [ MIT&CS [ TRAVEL [ GitHub&Git [ Python& ML [ CYBERINFRASTRUC.. [ COMPUTERVISION [ DATASCIENCE [ TIMESERIES [ FEATURE ENGINEE %

Flare Forecasting System

24-Hour Flare Forecast 48-Hour Flare Forecast

Most recent update time: 2024-06-06 00:01:19 UTC
Most recent time of SHARP data at JSOC: 2024-06-05 23:58:45 UTC
Flares that would occur within the next 24 hours

>=C-class flare >=M-class flare >=M>5-class flare
probability probability probability
13690~ N/A N/A N/A N/A
13691* 10128 N/A N/A N/A
13694~ N/A N/A N/A N/A
13695~ N/A N/A N/A N/A
13696~ N/A N/A N/A N/A
13697 10149 18.44% 12.53% 3.37%
13698 10153 0.75% 0.3% 0.18%
13699* 10161 N/A N/A N/A
13700* 10164 N/A N/A N/A
13701 10162 82.94% 19.61% 0.09%
13702 10166 0.79% 0.29% 0.1%
13703 10169 99.71% 99.71% 0.75%
13704 10168 35.27% 15.03% 0.1%
13705~ N/A N/A N/A N/A
13706 10171 13.14% 0.34% 0.09%
* This active region is near the limb, and hence no prediction is made on this active region.

~ This active region does not have SHARP data, and hence no prediction is made on this active region.
Please note that the information concerning active regions and SHARP data used to calculate the probabilities in the above table is based on the

active regions in 2024-06-05.
Do you want to view the previous flare predictions? ©'Yes @© No

Active region number HARP number
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v {_‘ CCSC: Community Coordinated X +

&« c

2% nature.njit.edu/solardb/ccsc

O TAWAN [ NBA [ SOLARPHYSICS [ CHINA [ NASA [ DEEPLEARNING [ DATA VISUALIZATI

Home

03 NIT&CS [ TRAVEL [ GitHub

Git

(3 Python& ML [ CYBERINFRASTRUC.

O COMPUTERVISION [ DATA SCIENCE

Community Coordinated Software Center

These Jupyter notebooks are now available on GitHub and Zenodo for interested researchers to view and execute.

[ TIME SERIES

ldentifying and Tracking
Solar Magnetic Flux
Elements with Deep

Learning

Predicting Solar Energetic
Particles Using SDO/HMI
Vector Magnetic Data
Products and a
Bidirectional LSTM
Network

Predicting Solar Flares
with Machine Learning

Forecasting the
Disturbance Storm Time

Index with Bayesian Deep

Learning

Predicting Coronal Mass
Ejections Using SDO/HMI
Vector Magnetic Data

Products and Recurrent
Neural Networks

Reconstruction of Total
Solar Irradiance by Deep
Learning

Predicting Solar Flares
Using a Long Short-term
Memory Network

A Transformer-Based
Framework for
Geomagnetic Activity
Prediction
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¥ E CCSC:Ce X Predictic X Operatic X Stokes In X Tracing - X Predictin X ATransfc X Reconsti X Forecast X Predictic X Predictic X Predictir X Identify: X Predictin X + = ju} X

<« » C s zenodo.org/records/7529705#.YSApDBXMID8 [CUN +4 ® 3 -

O TAWAN [ NBA [ SOLARPHYSICS [ CHINA [ NASA [ DEEPLEARNING [ DATA VISUALIZATI. O NIT&CS [ TRAVEL [ GitHub&Git [ Python& ML [ CYBERINFRASTRUC.. [ COMPUTERVISION [ DATASCIENCE [ TIMESERIES [ FEATURE ENGINEE.. »

Published June 29, 2022 | Version v1.1 [ Software W & Open |

516 387

@ VIEWS X DOWNLOADS
Forecasting the Disturbance Storm Time Index with Bayesian Deep

Learning

Yasser Abduallah® (®; Jason T. L. Wang' {

» Show more details

Prianka Bose'; Genwei Zhang'; Firas Gerges';

=g 2 i T .
Haimin Wang? @ Show affiliations \Versions
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Conclusion

» Al/ML is part of data-driven science. When more data becomes available, Al/ML comes to play a role.
Solar data science is filled with big complex data, so Al/ML is well suited for solar data science.

> AI_/I%/II_ can not guarantee to yield the best results, but Al/ML can work well when no (better) solution
exists!
» However, there are many challenges for Al/ML in solar data science:
* How to identify a solar data science problem suitable for Al/ML?
* Which Al/ML model to use (RF, LSTM, CNN, Transformer, GNN, GAN, Diffusion Model, PINN, RL)?
e Which architecture to use?
* Which parameters/hyperparameters to use?
e Which loss function and optimizer to use?
* How to prepare training data?
* How to interpret predictions and validate prediction results? Are the results usable and useful?

» On the other hand, there are also many opportunities; our case studies demonstrate some of these
opportunities.

» Al/ML in solar data science is still in its infancy. We look forward to more challenges and opportunities in
this interdisciplinary field.



Thank you



